

PORTING JAVA PET STORE APPLICATION USING

OR-MAPPER FOR PERSISTENCE

by

Rajini Raju
Chaya Sudindrakumar

(rajini_chaya@yahoo.com)

May 25, 2004

ABSTRACT

The Java Pet Store represents a typical J2EE e-commerce application, presenting
views of products and services for sale. Pet Store calls upon several distributed
components (EJB session beans), whose role is to interact with the data layer
implemented using EJB components (entity beans) and CMP (Container Managed
Persistence). Entity EJBs are pretty heavyweight and hard to use. This report
describes how Entity EJBs can be replaced with POJOs (Plain Old Java Objects)
and a lightweight Object-Relational Mapping (OR-Mapping) technology provided by
JDX product from Software Tree to act as the persistence layer. In addition to
greatly simplifying the architecture, this approach also seems to provide substantial
performance improvements over the original implementation.

http://www.softwaretree.com/
http://www.softwaretree.com/products/jdx/JDXHighlights.htm

CONTENTS

1. INTRODUCTION ...3
2. DESIGN CHANGES ..4
3. SOURCE CODE CHANGES ...5

3.1 Replacing an Entity Bean with a POJO class ... 5
3.2 Changes to a Session Bean .. 7
3.3 Changes to a Populator Module.. 9
3.4 Sequence Generators... 12
3.5 OR-Mapping File (petstore.jdx) ... 13

4. DIRECTORY STRUCTURE CHANGES..15
5. BUILD CHANGES...16
6. WEBLOGIC CONFIGURATION CHANGES...17
7. SUMMARY OF THE PORTING STEPS TO USE JDX OR-MAPPER IN
JAVA PET STORE...18
8. PERFORMANCE TESTING ..19
CONCLUSION..20

APPENDIX A: ENTITY BEANS..21
APPENDIX B: SESSION BEANS...22
APPENDIX C: POPULATOR FILES...23
APPENDIX D: SEQUENCE GENERATORS..24
APPENDIX E: MANAGING JDX SUBSYSTEM HANDLES25
APPENDIX F: NAMED QUERIES ..26

ACKNOWLEDGEMENTS ..27
RESOURCES ...27

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 2

1. INTRODUCTION

The Java Pet Store application is a decoupled enterprise architecture that can
interoperate with existing data sources and business partners’ systems, all built on
top of the J2EE platform. Pet Store represents a typical e-commerce application,
presenting views of products and services for sale. The key design pattern used in
the Java Pet Store is the Model-View-Controller (MVC) architecture, which
separates three distinct forms of functionality within the application.

The sample application comprises four separate sub-applications that cooperate to
fulfill the enterprise’s business needs, each of which is a J2EE application. Pet Store
calls upon several distributed components (EJB session beans), whose role is to
interact with the data layer implemented using EJB components (entity beans) and
CMP (Container Managed Persistence).

Java Pet Store Welcome Page

Entity EJBs are pretty heavyweight and hard to use. In this project, we decided to
use POJOs (plain old Java objects) and a lightweight Object-Relational Mapping
(OR-Mapping) technology provided by JDX product from Software Tree to act as the
persistence layer. The primary objective was to assess the design and coding
simplification achieved using such architecture. A secondary objective was to
measure performance improvements, if any.

This report describes the design, source code, build, and deployment changes to
use POJOs with JDX OR-Mapper for the Java Pet Store application. It also provides
some performance numbers under different load conditions. We used BEA
WebLogic Application Server version 8.1 (eval), Pointbase database version 4.4,
and JDX version 4.1 to build the application and used eValid testing tool (eval) for
performance measurements.

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 3

2. DESIGN CHANGES

The objective of the project was to replace the complexity of using Entity EJBs with
the simplicity of using POJOs (plain old Java objects) backed by JDX OR-Mapper for
persistence. So the essential design changes involved the following:

• POJOs replace all entity beans of Pet Store application.
• Session beans use POJOs instead of entity beans.
• Session beans use JDX for data access (persistence).

Web Component

EJB Session
Beans

EJB Entity
Beans
(CMP)

DB

Client
Application

Fig 1.Original Pet Store application high-level architecture using CMP

Web Component

DB

Rows

JDX OR-
Mapper

POJOs

EJB Session
Beans

Client
Application

Fig 2. Pet Store application architecture using JDX OR-Mapper for persistence

In the following sections, we describe the code, build, and deployment changes to
accomplish the architectural transformation.

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 4

3. SOURCE CODE CHANGES

This section explains the source code changes for using JDX OR-Mapper instead of
EJB CMP for persistence. The old code is shown with a light gray background color
and the new code is shown with an aqua background color. This section is divided
into the following subsections:

• Replacing an Entity Bean with a POJO class
• Changes to a Session Bean
• Changes to a Populator Module
• Sequence Generators
• OR-Mapping File

3.1 Replacing an Entity Bean with a POJO class

For each entity bean class (e.g. UserEJB.java), we created a POJO class (e.g.,
User_JDX.java) with the following simple changes.

• Replaced the abstract EntityBean declaration with POJO class declaration
• Replaced the ejbCreate () method with a constructor taking the same

arguments
• Removed all EJB life-cycle management methods such as

ejbPostCreate() and ejbActivate()
• Added an empty constructor
• Added a member variable for each persistent attribute
• Implemented the accessor methods (thus making them concrete methods)

5
© Copyright 2003-2004 Software Tree, Inc. All rights reserved

//UserEJB.java -- Old
public abstract class UserEJB implements EntityBean {
 private EntityContext context = null;
 // CMP fields
 public abstract String getUserName();
 public abstract void setUserName(String userName);
 public abstract String getPassword();
 public abstract void setPassword(String password);

 // EJB create methods
 public String ejbCreate(String userName, String password)
 throws CreateException {
 // code for checking the input data goes here
 setUserName(userName);
 setPassword(password);
 return null;
 }
 public void ejbPostCreate(String userName, String password)
 throws CreateException {
 }
 // Business methods
 public boolean matchPassword(String password) {
 return password.equals(getPassword());
 }

A

 // Misc Method
 public void setEntityContext(EntityContext c) {
 context = c;
 }
 public void unsetEntityContext() {
 }
 public void ejbRemove() throws RemoveException {
 }
 public void ejbActivate() {
 }
 public void ejbPassivate() {
 }
 public void ejbStore() {
 }
 public void ejbLoad() {
 }
}

list of all the entity beans and their replacements is shown in the Appendix A.

 // User_JDX.java -- New
 public class User_JDX {
 private String userName;
 private String password;

 public User_JDX(){
 }
 public User_JDX(String userName, String password) {
 // code for checking the input data goes here
 this.userName= userName;
 this.password=password;
 }
 public String getUserName() {
 return userName;
 }
 public void setUserName(String userName) {
 this.userName=userName;
 }
 public String getPassword() {
 return password;
 }
 public void setPassword(String password) {
 this.password=password;
 }

 public boolean matchPassword(String password) {
 return password.equals(getPassword());
 }

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 6

3.2 Changes to a Session Bean

For each session bean class (e.g. UserEJB.java), we made the following
modifications to use POJOs and JDX:

• Added code to access JDX OR-Mapper handles. Please note that this
code (see Appendix E) can conveniently be placed into a common super
class for these session beans.

• Modified methods to create entity beans with POJO constructors and JDX
insert calls.

• Modified findByPrimaryKey() methods to use JDX named query
mechanism (explained in Appendix F).

• Modified other finder methods to use JDX query calls.

The following code blocks shows mainly those methods and variables that are
modified by the new implementation.

public class SignOnEJB implements SessionBean {

 /**
 * business method used to check if a user is allowed to sign on
 */
 public boolean authenticate(String userName, String password) {
 try {
 UserLocal user = ulh.findByPrimaryKey(userName);
 return user.matchPassword(password);
 } catch (FinderException fe) {
 return false; // User not found, so authentication failed.
 }
 }
 /** business method to create new users **/
 public void createUser(String userName, String password)
 throws CreateException {
 UserLocal user = ulh.create(userName, password);
 }

}

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 7

public class SignOnEJB implements SessionBean {

 private User_JDX user = null;

 /** Insert JDX OR Mapper Handlers code mentioned in APPENDIX E **/

 public boolean authenticate(String userName, String password) {
 try {
 jxResource_ = checkoutJXResource();
 jdxHandle_ = jxResource_.getJDXHandle();
 Vector qParams = new Vector(); // param values for named quer
 qParams.add(userName);

 Vector users = jdxHandle_.executeNamedQuery("PKQuery",
 "com.sun.j2ee.blueprints.signon.user.ejb.User_JDX",
 qParams, -1,0, null);
 if (users.size()==0) {
 return false;
 }
 User_JDX user = (User_JDX) users.firstElement();
 return user.matchPassword(password);
 } catch (Exception ex) {
 return false; // User not found, so authentication failed.
 } finally {
 checkinJXResource();
 }
 }

 /** business method to create new users **/
 public void createUser(String userName, String password)
 throws EJBException{
 try {
 jxResource_ = checkoutJXResource();
 jdxHandle_ = jxResource_.getJDXHandle();
 user = new User_JDX(userName, password);
 jdxHandle_.insert(user, 0, null);
 } catch (Exception ex) {
 throw new EJBException("Could not create user " + userName +
 ". Error:" + ex.getMessage());
 } finally {
 checkinJXResource();
 }
 }
}

A list of all the modified session beans is shown in Appendix B.

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 8

3.3 Changes to a Populator Module

Populator modules are used to load the sample instance data for the given object
model in the database. For each populator class (e.g. UserPopulator.java), we
made the following modifications to use POJOs and JDX:

• Added code to access JDX OR-Mapper handles.
• Modified methods to populate the database using JDX insert calls.
• Modified findByPrimaryKey() and other finder methods to use JDX query

calls.

The following pages show changes to an example module (UserPopulator.java).

A list of all the Populator files modified is shown in Appendix C.

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 9

// UserPopulator.java – Old
public class UserPopulator {

 /* Initialize attributes here*/
 public UserPopulator() {
 this(XML_USERS);
 return;
 }
 public UserPopulator(String rootTag) {
 this.rootTag = rootTag;
 return;
 }
 public XMLFilter setup(XMLReader reader) throws PopulateException {
 /*………………………………………*/
 }
 public boolean check() throws PopulateException {
 try {
 InitialContext context = new InitialContext();
 UserLocalHome userHome =
 (UserLocalHome) context.lookup(JNDI_USER_HOME);
 Collection users = userHome.findAllUsers();
 if ((users == null) || (users.size() == 0)) {
 return false;
 }
 } catch (Exception exception) {
 return false;
 }
 return true;
 }
 private UserLocal createUser(String id, String password) throws
 PopulateException {
 try {
 if (userHome == null) {
 InitialContext context = new InitialContext();
 userHome = (UserLocalHome) context.lookup(JNDI_USER_HOME);
 }
 UserLocal user;
 try {
 user = userHome.findByPrimaryKey(id);
 user.remove();
 } catch (Exception exception) {
 }
 user = userHome.create(id, password);
 return user;
 } catch (Exception exception) {
 throw new PopulateException (“Could not create: “ +
 exception.getMessage(), exception);
 }
 }
}

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 10

// UserPopulator.java - New
public class UserPopulator {

 /* Initialize attributes here*/
 public UserPopulator() {
 this(XML_USERS);
 return;
 }
 public UserPopulator(String rootTag) {
 this.rootTag = rootTag;
 return;
 }
 /** Insert JDX OR Mapper Handlers code mentioned in APPENDIX E **/
 public XMLFilter setup(XMLReader reader) throws PopulateException {
 /*………………………………………*/
 }
 public boolean check() throws PopulateException {
 try {
 jxResource_ = checkoutJXResource();
 jdxHandle_ = jxResource_.getJDXHandle();

 Vector users=jdxHandle_.query
 ("com.sun.j2ee.blueprints.signon.user.ejb.User_JDX",
 null,1,0,null);

 if ((users == null) || (users.size() == 0)) {
 return false;
 }
 } catch (Exception exception) {
 return false;
 } finally {
 checkinJXResource();
 }
 return true;
 }
 private User_JDX createUser(String id, String password)
 throws PopulateException {
 try {
 try {
 jxResource_ = checkoutJXResource();
 jdxHandle_ = jxResource_.getJDXHandle();
 Vector users = new Vector();
 users=jdxHandle_.query
 ("com.sun.j2ee.blueprints.signon.user.ejb.User_JDX",

 "userName='"+id+"'",1,0,null);
 if (users .size() > 0) {
 jdxHandle_.delete(users.elementAt(0), 0, null);
 }
 } catch (Exception exception) {
 }
 user = new User_JDX(id, password);
 jdxHandle_.insert(user, 0, null);
 return user;

} catch (Exception exception) {
 throw new PopulateException ("Could not create: " +
 exception.getMessage(), exception);
}

 }
}

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 11

3.4 Sequence Generators

In original Java Pet Store, the container takes care of automatic primary key
generation for CMP entity beans with the help of application server specific
deployment descriptor files.

In the new implementation, we have used JDX OR-Mapper’s sequence
generation mechanism to generate primary keys for POJO objects. In JDX, a
named sequence can be defined declaratively in the mapping file. For example,
the following specification defines a sequence “SEQUENCE_GEN” with an initial
value of 1001.

SEQUENCE SEQUENCE_GEN START_WITH 1001

For runtime, we used JDXSeqUtil class to conveniently get persistently unique
sequence numbers for primary key initialization, as illustrated in the following
code block.
.

I
w
C
e

P
w

A

 // Sequence generator initialization code
JDXSeqUtil jdxSeqUtil = new JDXSeqUtil("SEQUENCE_GEN", 20);

// Usage of sequence generator
address.setPrimaryKey((int)jdxSeqUtil.getNextSeq(jdxHandle_));

n order to accomplish sequence generation, a utility module, jdxsequtil.java,
as created and placed in the directory
:\petstore1.3.1_02\src\components\util\jdx\src\com\sun\j2e
\blueprints\util\jdx

ublic getter and setter methods for primary key were added in the POJO files,
hich use JDX sequence generator.

 list of all the files using Sequence generators is shown in Appendix D.

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 12

3.5 OR-Mapping File (petstore.jdx)

JDX provides an innovative declarative way of specifying human readable OR-
Mapping information based on a simple grammar. The mapping specification
contains mapping information for all the persistent classes belonging to an
application domain. It includes, among other things, table names, primary key
attributes and object relationships. This mapping specification can conveniently be
put in a text file (ORMFile) that can be created in many different ways including
using a text editor, a modeling tool, JDXStudio or even programmatically. An
ORMFile serves to create a JDX mapping unit that provides a runtime exchange for
Java business objects and relational data.

The following snippets from petstore.jdx file describe the mappings for 2 different
classes. Example 1 shows mapping for User_JDX class to UserEJB table in the
database. The attributes userName (primary key) and password are mapped to
columns USERNAME and PASSWORD column respectively. PKQuery defines a
JDX named query.

Example 2 shows the mapping for Account_JDX class. Among other things, it also
shows mappings for complex attributes (creditCard and contactInfo) involving
cascade-delete (BYVALUE) relationships.

Example 1: JDX Mapping for class USER_JDX

CLASS com.sun.j2ee.blueprints.signon.user.ejb.User_JDX TABLE UserEJB
 PRIMARY_KEY userName
 SQLMAP FOR userName COLUMN_NAME USERNAME
 SQLMAP FOR password COLUMN_NAME PASSWORD
 QUERY_NAME PKQuery PREDICATE 'userName=?'
;
Example 2: JDX Mapping for class Account_JDX
CLASS com.sun.j2ee.blueprints.customer.account.ejb.Account_JDX TABLE AccountEJB
 PRIMARY_KEY primaryKey
 SQLMAP FOR primaryKey COLUMN_NAME PRIMARYKEY
 SQLMAP FOR status COLUMN_NAME STATUS
 IGNORE jxResourcePool_ jxResource_ jxSession_ jxResourcePoolInitialized_ jdxHandle_
 IMPLICIT_ATTRIB CREDITCARD_PRIMARYKEY ATTRIB_TYPE int
 IMPLICIT_ATTRIB CONTACTINFO_PRIMARYKEY ATTRIB_TYPE int
 RELATIONSHIP creditCard REFERENCES
 !com.sun.j2ee.blueprints.creditcard.ejb.CreditCard_JDX
 BYVALUE WITH CREDITCARD_PRIMARYKEY
 RELATIONSHIP contactInfo REFERENCES
 !com.sun.j2ee.blueprints.contactinfo.ejb.ContactInfo_JDX
 BYVALUE WITH CONTACTINFO_PRIMARYKEY
;

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 13

To learn more about the OR-Mapping configuration files, please refer to JDX
User Manual.

The file PetStoreORMapping.config contains settings to initialize JDX subsystem
in the class InitPetStoreJDXServlet.

The files petstore.jdx and PetStoreORMapping.config are located in the
\JDXConfig directory of the distribution.

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 14

4. DIRECTORY STRUCTURE CHANGES

Here is a summary of the directory structure changes for using JDX backed
POJO objects in Pet Store. Assuming:

PETSTORE_HOME: Root of the Pet Store folder (e.g., c:\petstore1.3.1_02)
BEA_HOME: Root of WebLogic 8.1 server installation (e.g., c:\bea), and
JX_HOME: Root of JDX software installation (e.g., c:\jdx4.1)

• Created new folder “jdx” under PETSTORE_HOME\src\components\util\ and a
directory structure in parallel to the “tracer” folder in
PETSTORE_HOME\src\components\util

Under the “jdx” folder:

o Source files InitPetStoreJDXServlet.java and JDXSeqUtil.java are

created in the directory
PETSTORE_HOME\src\components\util\jdx\src\com\sun\j2ee\blueprints\
util\jdx

o The build process automatically places the corresponding class files in the

directory
PETSTORE_HOME\src\components\util\jdx\build\classes\com\sun\j2ee\b
lueprints\util\jdx

• Created new folder \JDXConfig to hold OR-Mapping configuration files

petstore.jdx and PetStoreORMapping.config .

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 15

5. BUILD CHANGES

Changed build.xml in the following directories:

A build.xml file is created in

• PETSTORE_HOME\src\components\util\jdx\src similar to the one present
in PETSTORE_HOME\src\components\util\tracer\src

• In PETSTORE_HOME\src\components\build.xml file, the following lines have

been added.

<ant dir=”util/jdx/src” target=”core”/> (under target name=”core”)
<ant dir=”util/jdx/src” target=”clean”/>(under <target name=”clean”)

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 16

6. WEBLOGIC CONFIGURATION CHANGES

To use JDX OR-Mapper with WebLogic application server, following lines were
added to the startup file
BEA_HOME\user_projects\domains\petstore\startPetStoreWebLogic.cmd

• set JX_HOME=c:\jdx4.1
• set JDX_OPTS=”-DJX_HOME=%JX_HOME%”
• set

CLASSPATH=%CLASSPATH%;%JX_HOME%\classes\jxclasses.jar;c:\petstore1.3
.1_02\src\components\util\jdx\build\classes;c:\petstore1.3.1_02\src\
components\signon\build\classes;………

Note: In the above CLASSPATH, like the Signon component, we have also included
the classes folders under all other components present in
c:\petstore1.3.1_02\src\components and c:\petstore1.3.1_02\src\apps
directories.

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 17

7. SUMMARY OF THE PORTING STEPS TO USE JDX OR-MAPPER IN JAVA
PET STORE

We downloaded all the required software (petstore1.3.1_02, JDX 4.1, Weblogic 8.1)
and followed the steps of sections 2 to 6 . For instance, we created POJO files
(with suffix _JDX) to replace the entity beans of the original Pet Store application
(refer to section 3.1). We changed the session bean files, populator files and created
sequence generators as outlined in sections 3.2, 3.3, and 3.4.

We also made the following changes to the original Pet Store source files:

• To initialize the JDX subsystem, we added two new source files,
InitPetStoreJDXServlet.java and JDXSeqUtil.java, as mentioned in
section 4.

• To initialize database for JDX, we added two new tables, JDXSEQUENCE

and JDXMETADATA, to the existing Pet Store database using the
following commands that invoke JDXSchema utility program.

C:\JDXConfig> forward –metacreate
C:\JDXConfig > forward –metainit

Note: Other Instructions to run Pet Store with JDX on Weblogic application
server are given in detail in the file README.html provided with the distribution of
the software.

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 18

8. PERFORMANCE TESTING

Performance testing (Load Testing) was done using e-Valid, a browser based testing
tool. Using this tool we created test scripts, which simulated 1-50 users accessing
certain pages, starting from the home page to the order confirmation page of an item
selected (Homepage-> Item Selection Page-> Sign on Page-> Check out Page->
Order Page), from the Pet Store site. The tool generated test results in the form of
graphs and charts.

Server throughput was calculated using this equation:

Throughput = Number of requests / Elapsed time (min)

Each test script of the tool was run with ‘cache on’. So results of the tests were
considered after the first two runs of the application.

Hardware and Software Configuration

Hardware and OS Software
• 2.40 GHz Intel Pentium4
• 256 MB RAM
• 40 GB Hard Disk
• Win XP Professional (v 2002, SP 1)

• JDK Version 1.4.1_03
• BEA WebLogic Server Version 8.1
• PointBase RDBMS Version 4.4
• JDX OR-Mapper Version 4.1

We used out-of-the-box configuration of WebLogic, PointBase, and JDX. No special
tuning for the application or the environment was attempted.

Unfortunately we cannot publish the performance numbers without explicit
permission from the vendors. We will augment this section with actual results after
receiving appropriate permissions. In the meantime, you are welcome to run the
performance tests and get the numbers for your own settings. The details on
running the performance tests are included with the Pet Store implementation
package available from Software Tree’s web site. Here is a sample result:

Table 1. Sample load test results for n users

Applications

Fastest

Load Time

(sec)

Slowest Load

Time (sec)

Avg. Load

Time (sec

Elapsed

Time

(sec)

Throughput (no. of

reqs. / min)

Original JPS 1.3

on Weblogic 8.1
X1 Y1 Z1 T1 N1

JPS 1.3 with JDX

on Weblogic 8.1
X2 Y2 Z2 T2 N2

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 19

http://www.softwaretree.com/

CONCLUSION

The project has shown that the complexity of using EJB Entity Beans can be
removed by using POJO (Plain Old Java Object) classes with JDX, a lightweight
OR-Mapper provided by Software Tree. We have outlined the easy steps
needed to convert Pet Store, a representative J2EE application, from using EJB
with CMP (Container Managed Persistence) to using POJOs with JDX (OR-
Mapper for Persistence). The resulting application is not only simpler, but also
performs much better as proven by load testing with out-of-the-box settings.

Even though Entity Beans offer advantages like transaction and security
management, resource pooling, JNDI (Java Naming and Directory Interface), and
component lifecycle management, the following disadvantages make them hard
to use in many situations.

Entity Bean Disadvantages:

• Forces the use of a heavy component mechanism for fine-grained
business objects.

• More complex than JDX, limiting developer productivity.
• Inheritance not supported.
• Cannot be used for persistence in non-application server environments.
• There is no dynamic query mechanism to lookup entity beans (finders are

specified at compile time).
• It is not easy to write unit tests for beans, as it is not possible to use them

outside of an application server.

JDX Advantages:
• Works with POJOs providing all the associated object-model advantages

like inheritance and optimized placement of business logic.
• Lightweight and efficient mapping engine.
• High performance and scalable implementation.
• Small set of simple and flexible APIs.
• Smart and elegant mapping specification.
• Supports many different application architectures; works with JSP,

Servlets, EJBs and standalone programs.
• Works with most popular databases, existing schema, and application

servers.
• Easy to learn and easy to use.

Although this report details the steps taken to transform the existing Pet Store
application to use a simpler persistence model with JDX OR-Mapper, it should be
easy to infer that using JDX will also benefit development of fresh Java/J2EE
applications.

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 20

APPENDIX A: ENTITY BEANS

The following table lists the names of the entity beans and the corresponding POJO
classes replacing them in the new implementation using JDX OR-Mapper for
persistence. For example, UserEJB.java is replaced by User_JDX.java.

The components 1-12 are present in the directory
c:\petstore1.3.1_02\src\components*

The component No. 13 is present in the directory
c:\petstore1.3.1_02\src\apps\supplier\src\com\sun\j2ee\blueprints\supplier

No. COMPONENT ENTITY BEAN POJO OBJECT
1. Signon UserEJB.java User_JDX.java
2. Uidgen CounterEJB.java Counter_JDX.java
3. processmanager ManagerEJB.java Manager_JDX.java
4. Lineitem LineItemEJB.java LineItem_JDX.java
5. Customer CustomerEJB.java Customer_JDX.java
6. Address AddressEJB.java Address_JDX.java
7. Creditcard CreditCardEJB.java CreditCard_JDX.java
8. Contactinfo ContactinfoEJB.java ContactInfo_JDX.java
9. purchaseorder PurchaseOrderEJB.java PurchaseOrder_JDX.java
10. supplierpo SupplierOrderEJB.java SupplierOrder_JDX.java
11. account AccountEJB.java Account_JDX.java
12. profile ProfileEJB.java Profile_JDX.java
13. inventory InventoryEJB.java Inventory_JDX.java

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 21

APPENDIX B: SESSION BEANS

The following table lists the names of the session beans along with the POJO
classes they are using within their new implementation employing JDX OR-Mapper
for persistence. For example, SignOnEJB.java uses User_JDX.java.

Session beans 1-3 are located in the path c:\petstore1.3.1_02\src\components.

Session bean No.4 is located in c:\petstore1.3.1_02\src\apps\opc,

Session bean No.5 is located in c:\petstore1.3.1_02\src\apps\petstore, and

Session bean No.6 is located in c:\petstore1.3.1_02\src\apps\supplier.

No. SESSION BEAN POJO OBJECT
1. SignOnEJB.java User_JDX.java
2. ProcessManagerEJB.java Manager_JDX.java
3. UniqueIdGeneratorEJB Counter_JDX.java
4. OPCAdminFacadeEJB.java PurchaseOrder_JDX.java
5. ShoppingClientFacadeLocalEJB.java Customer_JDX.java
6. DisplayInventoryBean.java,

OrderFulfillmentFacadeEJB.java
Inventory_JDX.java

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 22

APPENDIX C: POPULATOR FILES

The following table lists the populator classes, which populate the Pet Store demo
database using JDX OR-Mapper.

These classes are located in the directory
c:\petstore1.3.1_02\src\apps\petstore\src\com\sun\j2ee\blueprints\petstore
\tools\populate.

No. POPULATOR FILES
1 UserPopulator.java
2 CustomerPopulator.java
3 AccountPopulator.java
4 CreditCardPopulator.java
5 ContactInfoPopulator.java
6 AddressPopulator.java
7 ProfilePopulator.java

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 23

APPENDIX D: SEQUENCE GENERATORS

The following table lists the POJO classes, which use the JDX Sequence generator
mechanism to initialize the primary key attributes of new instances.

No. SEQUENCE GENERATORS
1 Address_JDX
2 Account_JDX
3 CreditCard_JDX
4 ContactInfo_JDX
5 Profile_JDX
6 LineItem_JDX

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 24

APPENDIX E: MANAGING JDX SUBSYSTEM HANDLES

The following common code is used to initialize and use JDX subsystem handles.
Please note that this code can conveniently be placed into a common super
class for those session beans, which need to interact with persistent POJOs.

private boolean jxResourcePoolInitialized_ = false;
private JXResourcePool jxResourcePool_;
private JXResource jxResource_ = null;
private JXSession jxSession_ = null;
private JDXS jdxHandle_ = null;

/* This method initializes the initializing parameters. */
public void init() {
 if (!jxResourcePoolInitialized_) {
 jxResourcePool_ = InitPetStoreJDXServlet.getJXResourcePool();
 jxResourcePoolInitialized_ = true;
 }
}

/* JDX checkin checkout methods */
public JXResource checkoutJXResource() {
 init();
 if (jxResource_ == null) {
 jxResource_ = (JXResource) jxResourcePool_.getResource();
 }
 return jxResource_;
}
/* This method releases the database resource handle into the pool
 of resource handles. */
public void checkinJXResource() {
 if (jxResource_ != null) {
 jxResourcePool_.releaseResource(jxResource_);
 }
 jxResource_ = null;
}

Notice that JDX provides the resource pooling utility components (JXResource and
JXResourcePool) to help develop multi-client applications. These components may
be used to simplify the creation of an extensible pool of JX/JDX handles and share
those handles efficiently in a multi-threaded application. The above code uses the
static method getJXResourcepool() in InitPetStoreJDXServlet class, which returns a
pool of resource handles.

It is interesting to note that the code can be simplified by using aspect-oriented
programming (AOP). In particular, the code to checkout/checkin JDX handles
can easily be refactored with an advice.

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 25

APPENDIX F: NAMED QUERIES

JDX provides the facility to define a named query with optional parameter markers.
The named query can be defined once and used (executed) multiple times. Named
queries can provide greater convenience, more flexibility, and better performance in
many situations. The query will be executed by JDX using a prepared statement for
faster performance. The named query is automatically defined and executed for all
the subclasses.

For example consider SignOnEJB.java(new) mentioned earlier. There we have
used a named query (PKQuery) to retrieve a User object having a given username
as the following code shows:

Vector qParams = new Vector();
qParams.add(userName);
Vectorusers=jdxHandle_.executeNamedQuery(“PKQuery”,
 “com.sun.j2ee.blueprints.signon.user.ejb.User_JDX”,
 qParams, -1,0, null);

In the mapping file (petstore.jdx), the following specification defines the named
query PKQuery for the class User_JDX class.

 QUERY_NAME PKQuery PREDICATE ‘userName=?’

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 26

ACKNOWLEDGEMENTS

We want to thank our friends Vidya Hungud and Gayathri Prakasam for their help
in carefully reviewing this document for readability and usability. Chaya wants to
thank her husband Jayaprakash for his cooperation and support during the
project work. Finally, we want to thank Damodar Periwal, the architect of JDX
OR-Mapper, for his help throughout the project.

RESOURCES

• To download Sun’s Java Pet Store Demo V.1.3.1_02, go to

 http://java.sun.com/developer/releases/petstore/petstore1_3_1_02.html

• To download Software Tree’s JDX 4.1 OR-Mapper, go to
 http://www.softwaretree.com/

• To download BEA WebLogic 8.1 Application server, go to

 http://commerce.bea.com/index.jsp

• To download Software Research’s e-Valid 4.0 Testing tool, go to
 http://www.soft.com/eValid/Products/Download.40/down.evalid.40.phtml

© Copyright 2003-2004 Software Tree, Inc. All rights reserved 27

http://www.softwaretree.com/
http://commerce.bea.com/index.jsp
http://www.soft.com/eValid/Products/Download.40/down.evalid.40.phtml

	INTRODUCTION
	DESIGN CHANGES
	Fig 1.Original Pet Store application high-level architecture
	Fig 2. Pet Store application architecture using JDX OR-Mappe

	SOURCE CODE CHANGES
	3.1 Replacing an Entity Bean with a POJO class
	3.2 Changes to a Session Bean
	3.3 Changes to a Populator Module
	3.4 Sequence Generators
	3.5 OR-Mapping File (petstore.jdx)
	Example 1: JDX Mapping for class USER_JDX
	Example 2: JDX Mapping for class Account_JDX
	To learn more about the OR-Mapping configuration files, plea

	DIRECTORY STRUCTURE CHANGES
	BUILD CHANGES
	WEBLOGIC CONFIGURATION CHANGES
	SUMMARY OF THE PORTING STEPS TO USE JDX OR-MAPPER IN JAVA PE
	PERFORMANCE TESTING
	Hardware and Software Configuration
	Table 1. Sample load test results for n users

	CONCLUSION
	APPENDIX A: ENTITY BEANS
	APPENDIX B: SESSION BEANS
	APPENDIX C: POPULATOR FILES
	APPENDIX D: SEQUENCE GENERATORS
	APPENDIX E: MANAGING JDX SUBSYSTEM HANDLES
	APPENDIX F: NAMED QUERIES

	ACKNOWLEDGEMENTS
	RESOURCES

